

Course Title: Machine Learning

Course Code: 425CCS-3

Program: Bachelor of Science in Computer Science

Department: Department of Computer Science

College: Computer Science and Information Systems

Institution: Najran University

Version: 2.0

Last Revision Date: August 2022

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	6
D. Students Assessment Activities	7
E. Learning Resources and Facilities	7
F. Assessment of Course Quality	8
G. Specification Approval	8

A. General information about the course:

1. Course Identification

1. Credit hours: (3)

3 (2, 2, 1) [Theory, Lab, Tutorial]

2. Course type						
Α.	□University	□College	🛛 Depa	rtment	□Track	□Others
В.	oxtimes Required			□Electi	ve	
3. Level/year at which this course is offered: (Level 8/Year 4)						
4. C	ourse General D	Description:				

This course introduces various algorithm design paradigms and the basics of computational complexity analysis using different models of computations with an overview of mathematical essentials, space and time complexities, and asymptotic notations. Design and analysis of algorithms covers linear programming, greedy algorithms, divide-and-conquer, backtracking, branch-and-bound, search methods, graph algorithms and introduction to NP-completeness. Machine Learning is the science of getting machines to learn, more specifically, designing algorithms that allow computers to learn from empirical data. In this course, you will learn about definitions and examples of machine learning, inductive learning, statistical-based learning, reinforcement learning, supervised learning, unsupervised learning, learning decision trees, neural networks, belief networks, nearest neighbour algorithm, clustering, learning theory, the problem of overfitting, and computational learning theory.

5. Pre-requirements for this course (if any):

211CCS-4

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

- 1. After successful completion of this course students should be able to:
- 2. Comprehend the fundamental concepts of Machine Learning (ML).
- 3. Developing an appreciation for what is involved in learning from data.

- 4. Understand outline paradigms for learning, challenges in data, model selection, model complexity and model evaluation.
- 5. Explain several machine learning algorithms and their weaknesses and strengths.
- 6. Design a ML solution to real problem using different ML algorithms.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	75	100%
2	E-learning		
	Hybrid		
3	Traditional classroom		
	E-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	30
3.	Field	
4.	Tutorial	15
5.	Others (specify)	
Total		75

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
1.0	Knowledge and underst	anding		
1.1	Comprehend the fundamental concepts of Machine Learning (ML).	K1	 Review of the previous topics before the new lecture that relates and has an impact on new lecture topics. Explain questions during the lectures. 	Projects Midterm exam Final Exam

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
			 3. Encourage students to bring up new ideas related to the topics/lectures. 4. Assignments 5. Tutorials 	
1.2	Understand outline paradigms for learning, challenges in data, model selection, model complexity and model evaluation.	K1	1. Compose more real-life examples in the lecture relating to the surroundings of the students to draw attention that certainly helps them to concentrate more on the	Projects Midterm exam Final Exam
1.3	Explain several machine learning algorithms and their weaknesses and strengths.	K1	 specific topic. 2. In some cases, pick one student who understood best a specific topic and let him describe in front of the class in his own manner. 3. Represent more easily understandable graphs/pictures in the class to describe certain topic and in that process use interesting words or interactive sounds to help students to improve their receptive memory. 4. Dictate students on certain topics during the lectures. 5. Recall the topics of last lecture and the critical issues based on different topics, which certainly helps students to recall memory frequently and store that topic in their memory for long term. 6. Before start a new topic or at the end of each topic, students are given couple of minutes to imagine the real life scenarios relating to that topic including implementation, advantages, deficiencies etc. to improve their logical thinking. 	Projects Midterm exam Final exam

2.0

Skills

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
2.1	Developing an appreciation for what is involved in learning from data.	S4, S5	1. Assignment or research on selected topic: Divide students in to small groups and randomly select the team	LecturesProjects
2.2	Design an ML solution to the real problem using different ML algorithms.	S1, S2	leader of the group (one member at a time) who will distribute workloads among group members and responsible to collect, merge, modify the content if needed, represent in front of the class. 2. Quiz tournament among groups: After every two weeks all groups must participates a quiz competition where one group will produce questions from the last four lectures topics and the others will answer. 3. Delivering speech on a topic: Students will be chosen randomly to deliver speech in front of the class on the topics covered in the class in their own fashion.	
2.3				
2.4				
3.0	Values, autonomy, and	responsibility		
3.1				
3.2				

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction	5
2.	Linear Regression with One Variable	5
3.	Linear Regression with Multiple Variables	5
4.	Logistic Regression	10
5.	Regularization	10

6.	ML Project Design	10
7.	Neural Networks: Representation	10
8.	Neural Networks: Learning	5
9.	Bayesian Decision Theory	5
10.	Decision Trees / Clustering	5
	Total	75

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Midterm	9 th week	20
2.	Project-1	5 th week	10
3.	Project-2	10 th week	10
4.	Final lab	11 th week	10
5.	Final Theory Exam	16 th or 17 th	50

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Ethem Alpaydin, Introduction to Machine Learning, Third Edition, The MIT Press (ISBN: 9780262028189). Tom Mitchell, Machine Learning, McGraw-Hill, (ISBN: 0070428077)
Supportive References	
Electronic Materials	
Other Learning Materials	

2. Required Facilities and equipment

Items	Resources
facilities	Well-equipped lecture room containing board
(Classrooms, laboratories, exhibition rooms,	and data show device.
simulation rooms, etc.)	Well-equipped laboratory for practical work.

Items	Resources
Technology equipment (projector, smart board, software)	Lecture room should contain a PC attached to the data show device with MS Office and Adobe Acrobat Reader packages being installed

Other equipment

(depending on the nature of the specialty)

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Collecting students' suggestions to facilitate more during the class.	Students	Verbal discussion
Student's questionnaire once during the semester about course learning outcomes.	Students	Indirect Survey
Achievement percentage of course learning outcomes, direct evaluation using CLO assessment sheet	Course Instructor	Direct evaluation using CLO achievement calculation
Teaching strategies	Quality unit	Indirect
Assessment methods	Quality unit	Indirect
Instructor performance	Quality unit	Indirect
Course content	Quality unit	Indirect

Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify)

Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	Computer Science Departmental Council
REFERENCE NO.	14440203-0185-00002
DATE	1st Sep, 2022

