

Course Title: Simulation and Modelling

Course Code: 516CCS-3

Program: Bachelor of Science in Computer Science

Department: Department of Computer Science

College: Computer Science and Information Systems

Institution: Najran University

Version: 2.0

Last Revision Date: August 2022

Table of Contents

A. General information about the course:	3
Methods	3
C. Course Content	5
D. Students Assessment Activities	5
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	6
G. Specification Approval	7

A. General information about the course:

1. Course Identification

1. Credit hours: (3)

3 (2, 2, 1) [Theory, Lab, Tutorial]

2. Course type					
Α.	□University	□College	🛛 Department	□Track	□Others
В.	🛛 Required		□Elect	ive	
3. Level/year at which this course is offered: (Level 9/Year 5)					
4. Course General Description:					

This module aims to introduce students to the modelling and analysis of dynamic systems. Students will learn about the different types of systems, based on real-world examples. Students will gain an appreciation of the overall process of modelling and analysis, from understanding the question to be answered through to the presentation of findings. Then, understand the different approaches to system modelling, including system input-output equations, linear and non-linear system behaviour, computer-based system analysis, finite difference equations, Markov models, Monte Carlo methods and automata.

5. Pre-requirements for this course (if any):

None

6. Co-requisites for this course (if any):

None

7. Course Main Objective(s):

- 1. Understand the general concepts: System, model, and simulation.
- 2. Identify and explain the types of mathematical models.
- 3. Apply standard tools to solve practical engineering problems

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	75	100%
2	E-learning		

No	Mode of Instruction	Contact Hours	Percentage
	Hybrid		
3	Traditional classroom		
	• E-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	30
3.	Field	
4.	Tutorial	15
5.	Others (specify)	
Total		75

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understand	ing		
1.1	Understand the general concepts: System, model, simulation.	Kı	Lectures Assignments	Homework Midterm exams Final Exam
1.2	Identify and explain the types of mathematical models.	Kı	Lectures Assignments	Homework Midterm exams Final Exam
1.3				
2.0	Skills			
2.1	Analyze of dynamic systems	S1, S3	Lectures Assignments	Homework Midterm exams Final Exam
2.2	Apply standard tools to solve practical computer science problems	S1, S4, S5	Lectures Assignments	Homework Midterm exams Final Exam
2.3				
2.4				
3.0	Values, autonomy, and resp	onsibility		

Code	Course Learning Outcomes	Code of PLOs aligned with the program	Teaching Strategies	Assessment Methods
3.1				
3.2				

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction to Simulation and Modeling	10
2.	Statistics and Probability for Simulation	10
3.	Topics in Descriptive Simulation Modeling	15
4.	Techniques for Sensitivity Estimation	10
5.	Simulation-based Optimization Techniques	10
6.	Metamodeling and the Goal seeking Problems	10
7.	"What-if" Analysis Techniques	10
	Total	75

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Quizzes	3^{th} and 6^{th} week	10%
2.	Assignments or mini project (presentation)	2 nd and 8 th week	20%
3.	Mid Term Exam	9 th week	20%
4.	Final Lab Exam	14 th week	10%
5.	Final Exam	16 th or 17 th week	40%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References

1. A.M.Law Kelton, "Simulation Modeling and Analysis", 2006, ISBN-10: 0073294411

	 Hung V. V. and Esfandiari R. S., Dynamic Systems Modelling and Analysis, McGraw-Hill, 1998 W.David Kelton, "Simulation with Arena", 2006, ISBN-10: 0073259896
Supportive References	As mentioned above
Electronic Materials	Available all uploaded lecture slides on Blackboard.
Other Learning Materials	NA

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Lecture Rooms with 20 seats with smart table, Mic, Speaker, PC, Auto Projector with Screen and a whiteboard or A smart board.
Technology equipment (projector, smart board, software)	 Desktop/ Laptop computer Network printer Internet facility for open labs to solve various case studies and for assignments
Other equipment (depending on the nature of the specialty)	NA

F. Assessment of Course Quality

Assessor	Assessment Methods		
Students	Verbal discussion		
Students	Indirect Survey		
Course Instructor	Direct evaluation using CLO achievement calculation		
Quality unit	Indirect		
Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify)			
	Students Students Course Instructor Quality unit Quality unit Quality unit Quality unit		

Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	Computer Science Departmental Council
REFERENCE NO.	14440203-0185-00002
DATE	1st Sep, 2022

