



# Course Specification (Bachelor)

Course Title: System Dynamics & Control

Course Code: 452-MEC-3

**Program: Bachelor of Science in Engineering** 

**Department: Mechanical Engineering** 

**College: College of Engineering** 

Institution: Najran University

Version: 1.0

Last Revision Date: 27 February 2024







# **Table of Contents**

| A. General information about the course:                                          | 3 |
|-----------------------------------------------------------------------------------|---|
| B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment<br>Methods | 4 |
| C. Course Content                                                                 | 8 |
| D. Students Assessment Activities                                                 | 8 |
| E. Learning Resources and Facilities                                              | 8 |
| F. Assessment of Course Quality                                                   | 9 |
| G. Specification Approval                                                         | 9 |





# A. General information about the course:

# **1. Course Identification**

# 1. Credit hours: (3) 2. Course type A. □University □College ☑ Department □Track □Others B. ☑ Required □Elective 3. Level/year at which this course is offered: (Fifth Year \ Level 10)

# 4. Course general Description:

This course is an introduction to the dynamics of lumped-parameter models of mechanical systems. Laplace Transforms. Transfer Function. Block diagrams. State Space Equations of Control Systems. Mathematical Modeling of Dynamic Systems; Mechanical, Electrical, Electromechanical, Liquid Level, Thermal, and Pressure systems. Industrial Automatic Controllers; Basic Control Actions, Tuning Methods. Transient Response Analysis. Root Locus. Frequency Response1 (Bode Plot). Frequency Response2 (Nyquist Plot), State Space Modeling and Analysis, Controllability and Observability.

5. Pre-requirements for this course (if any):

205-GEC-3 (Dynamics), 204-MATH-3 (DIFFERENTIAL EQUATION)

## 6. Co-requisites for this course (if any):

NIL

# 7. Course Main Objective(s):

1.Demonstrate knowledge of the fundamental assumptions related to the derivation of simple dynamic models.

2.Demonstrate ability to identify dynamic characteristics: natural frequency, damping, time constant, settling time, etc. of simple dynamic systems.

3.Demonstrate ability to perform computer simulations of basic control actions as applied to simple dynamic systems, and to show the effect of varying controller's parameters on stability and performance.

4.Demonstrate ability to perform laboratory experiments to demonstrate the basic control actions as applied to simple mechanical, electromechanical, thermal, and fluid systems.





5.Demonstrate knowledge of how control systems are crucial to the functionality and performance of dynamic systems.

# 2. Teaching mode (mark all that apply)

| No | Mode of Instruction   | Contact Hours | Percentage |
|----|-----------------------|---------------|------------|
| 1  | Traditional classroom | 60            | 100%       |
| 2  | E-learning            |               |            |
|    | Hybrid                |               |            |
| 3  | Traditional classroom |               |            |
|    | E-learning            |               |            |
| 4  | Distance learning     |               |            |

# 3. Contact Hours (based on the academic semester)

| No    | Activity          | Contact Hours |
|-------|-------------------|---------------|
| 1.    | Lectures          | 30            |
| 2.    | Laboratory/Studio | 15            |
| 3.    | Field             |               |
| 4.    | Tutorial          | 15            |
| 5.    | Others (specify)  |               |
| Total |                   | 60            |

# **B.** Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

| Code | Course Learning<br>Outcomes                                                                                            | Code of CLOs aligned<br>with program | Teaching<br>Strategies                                                                                                                         | Assessment<br>Methods                                                                                              |
|------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 1.0  | Knowledge and understanding                                                                                            |                                      |                                                                                                                                                |                                                                                                                    |
| 1.1  | Modeling of<br>mechanical systems<br>both translational<br>and rotational<br>Transient and steady<br>state analysis of | 1                                    | TS:1-Interactive<br>lectures using<br>PowerPoint slides<br>TS:2- Engaging the<br>students in<br>problem-based<br>learning through<br>tutorials | -Test<br>performance<br>evaluation<br>-Evaluation of<br>participation in<br>discussion and<br>group<br>assignments |





| Code | Course Learning                                                                                                                                       | Code of CLOs aligned | Teaching                                                                                                                                                                                                                                                                                                                                                                                                     | Assessment                                                                                                                                     |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Outcomes                                                                                                                                              | with program         | Strategies                                                                                                                                                                                                                                                                                                                                                                                                   | Methods                                                                                                                                        |
|      | electrical and<br>mechanical system.                                                                                                                  |                      | TS: 3 – Associating<br>the topics in each<br>chapter with the<br>CLO.<br>TS:4 – Conducting<br>quizzes for each<br>chapter<br>TS:5 – Giving more<br>example programs<br>in the lecture<br>TS: 6 – Discussion<br>with the students<br>in the class hours                                                                                                                                                       | -Written<br>Assessment.                                                                                                                        |
| 1.2  | Stability analysis of<br>systems using<br>frequency analysis<br>Frequency analysis<br>using polar plot,<br>Nyquist plot Design<br>of PID controllers. | 1                    | TS:1-Interactive<br>lectures using<br>PowerPoint slides<br>TS:2- Engaging the<br>students in<br>problem-based<br>learning through<br>tutorials<br>TS: 3 – Associating<br>the topics in each<br>chapter with the<br>CLO.<br>TS:4 – Giving more<br>assignment for<br>each chapter<br>TS:5 – Giving more<br>example programs<br>in the lecture<br>TS: 6 – Discussion<br>with the students<br>in the class hours | -Test<br>performance<br>evaluation<br>-Evaluation of<br>participation in<br>discussion and<br>group<br>assignments<br>-Practical<br>Assessment |
| 2.0  | Skills                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                |
| 2.1  | Capabilities are<br>developed to model<br>basic mechanical<br>systems. Check the<br>system performance<br>overshoot, over                             | 6                    | TS:1-Interactive<br>lectures using<br>PowerPoint slides<br>TS:2- Engaging the<br>students in<br>problem-based                                                                                                                                                                                                                                                                                                | •Locally<br>Developed<br>Exams such as<br>Quiz, Mid &<br>Final Exams                                                                           |
| ***  | •                                                                                                                                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                |



| Code | Course Learning<br>Outcomes                                                                                                                                                                                                         | Code of CLOs aligned<br>with program | Teaching<br>Strategies                                                                                                                                                                                                                                                                                                                       | Assessment<br>Methods                                                                                                                                                                                                                |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | damped, under<br>damped and Matlab<br>commands                                                                                                                                                                                      |                                      | learning through<br>tutorials<br>TS: 3 – Associating<br>the topics in each<br>chapter with the<br>CLO.<br>TS:4 – Conducting<br>quizzes for each<br>chapter<br>TS: 5 – Discussion<br>with the students<br>in the class hours                                                                                                                  | with scoring<br>rubrics<br>•Assignments<br>involving<br>critical and<br>logical thinking<br>questions<br>•Quizzes                                                                                                                    |
| 2.2  | An ability to recall<br>and apply the<br>concepts in solving<br>problems. Students<br>are asked to do and<br>practice<br>independently for a<br>longer retention<br>period in mind thus<br>practice oriented<br>learning is valued. | 2                                    | TS:1-Interactive<br>lectures using<br>PowerPoint slides<br>TS:2- Engaging the<br>students in<br>problem-based<br>learning through<br>tutorials<br>TS: 3 – Associating<br>the topics in each<br>chapter with the<br>CLO.<br>TS:4 – Conducting<br>quizzes for each<br>chapter<br>TS: 5 – Discussion<br>with the students<br>in the class hours | <ul> <li>Locally<br/>Developed<br/>Exams such as<br/>Quiz, Mid &amp;<br/>Final Exams<br/>with scoring<br/>rubrics</li> <li>Assignments<br/>involving<br/>critical and<br/>logical thinking<br/>questions</li> <li>Quizzes</li> </ul> |
| 3.0  | Values, autonomy, and                                                                                                                                                                                                               | d responsibility                     |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                      |
| 3.1  | Allocating group<br>based assignment,<br>giving challenging<br>problems so that<br>they share with<br>classmates and<br>teachers, help of<br>internet for solving<br>it.                                                            | 5                                    | TS:1-Interactive<br>lectures using<br>PowerPoint slides<br>TS:2- Engaging the<br>students in<br>problem-based<br>learning through<br>tutorials<br>TS: 3 – Associating<br>the topics in each                                                                                                                                                  | Locally<br>Developed<br>Exams such as<br>Quiz, Mid &<br>Final Exams<br>with scoring<br>rubrics<br>•Assignments<br>involving<br>critical and                                                                                          |





| Code | Course Learning                           | Code of CLOs aligned | Teaching                                                                                                                                                                                                                                                                                                                                                                                                                   | Assessment                                                                                                                                                                               |
|------|-------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| couc | Outcomes                                  | with program         | Strategies                                                                                                                                                                                                                                                                                                                                                                                                                 | Methods                                                                                                                                                                                  |
|      |                                           |                      | chapter with the<br>CLO.<br>TS:4 – Conducting<br>midterm and Final<br>Exam for each<br>chapter<br>TS:5 – Giving more<br>example programs<br>in the lecture<br>TS: 6 – Discussion<br>with the students<br>in the class hours                                                                                                                                                                                                | logical thinking<br>questions<br>•Quizzes                                                                                                                                                |
| 3.2  | Group tasks, projects<br>to work in teams | 5                    | TS:1-Interactive<br>lectures using<br>PowerPoint slides<br>TS:2- Engaging the<br>students in<br>problem-based<br>learning through<br>tutorials<br>TS: 3 – Associating<br>the topics in each<br>chapter with the<br>CLO.<br>TS:4 – Conducting<br>midterm and Final<br>Exam for each<br>chapter<br>TS:5 – Giving more<br>example programs<br>in the lecture<br>TS: 6 – Discussion<br>with the students<br>in the class hours | Locally<br>Developed<br>Exams such as<br>Quiz, Mid &<br>Final Exams<br>with scoring<br>rubrics<br>•Assignments<br>involving<br>critical and<br>logical thinking<br>questions<br>•Quizzes |

\*\*\*\*



# **C.** Course Content

| No  | List of Topics                                                                           | Contact Hours |
|-----|------------------------------------------------------------------------------------------|---------------|
| 1.  | Introduction to control systems.                                                         | 6             |
| 2.  | The Laplace Transform                                                                    | 6             |
| 3.  | Mathematical Modeling of Dynamic Systems                                                 | 6             |
| 4.  | Block Diagram representation                                                             | 6             |
| 5.  | Transient and steady state response analysis                                             | 6             |
| 6.  | Root locus Analysis                                                                      | 6             |
| 7.  | Control system Design by Rouths stability criterion                                      | 6             |
| 8.  | Frequency response analysis- polar and Nyquist plot analysis of an un damped system.     | 6             |
| 9.  | Control system design by frequency response                                              | 6             |
| 10. | Proportional, Proportional plus derivative control, proportional plus integral, and PID. | 6             |
|     | Total                                                                                    | 60            |

# **D. Students Assessment Activities**

| No | Assessment Activities * | Assessment<br>timing<br>(in week no) | Percentage of Total<br>Assessment Score |
|----|-------------------------|--------------------------------------|-----------------------------------------|
| 1. | Assignments             | 1-12                                 | 10%                                     |
| 2. | Quizzes                 | 1-12                                 | 10%                                     |
| 3. | Mid-term                | 6-12                                 | 20%                                     |
| 4. | labs                    | 2-10                                 | 10%                                     |
| 5. | Final exam              | 15                                   | 50%                                     |

\*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

# E. Learning Resources and Facilities

# **1. References and Learning Resources**

| Essential References     | Katsuhiko Ogata, Modern Control Engineering, 5th Edition, 2009, |  |  |
|--------------------------|-----------------------------------------------------------------|--|--|
| Supportive References    | System Dynamics, William J. Palm III, McGraw-Hill, 2005.        |  |  |
| Electronic Materials     | NA                                                              |  |  |
| Other Learning Materials | NA                                                              |  |  |





# 2. Required Facilities and equipment

| Items                                                                                        | Resources                   |
|----------------------------------------------------------------------------------------------|-----------------------------|
| <b>Facilities</b><br>(Classrooms, laboratories, exhibition rooms,<br>simulation rooms, etc.) | Classrooms and laboratories |
| <b>Technology equipment</b><br>(projector, smart board, software)                            |                             |
| Other equipment<br>(depending on the nature of the specialty)                                |                             |

# F. Assessment of Course Quality

| Assessor                             | Assessment Methods                                                                                                 |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Program Leaders and Peer<br>Reviewer | Direct and Indirect                                                                                                |
| Students & Faculty                   | Direct and Indirect                                                                                                |
| Students & Faculty                   | Direct and Indirect                                                                                                |
| Students & Faculty                   | Direct and Indirect                                                                                                |
|                                      | Assessor<br>Program Leaders and Peer<br>Reviewer<br>Students & Faculty<br>Students & Faculty<br>Students & Faculty |

### Other

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

# **G. Specification Approval**

| COUNCIL /COMMITTEE | DEPARTMENT OF MECHANICAL ENGINEERING |
|--------------------|--------------------------------------|
| REFERENCE NO.      |                                      |
| DATE               | 27/02/2024                           |

