

T-104 2022

Course Specification

Course Title:	Differential Geometry
Course Code:	433Math-3
Program:	B.Sc. of Mathematics
Department:	Mathematics
College:	Art and Science
Institution:	Najran University
Version:	1
Last Revision Date:	07-05-2023

Table of Contents:

Content	Page
A. General Information about the course	3
 Teaching mode (mark all that apply) Contact Hours (based on the academic semester) 	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	4
D. Student Assessment Activities	5
E. Learning Resources and Facilities	5
1. References and Learning Resources	5
2. Required Facilities and Equipment	5
F. Assessment of Course Qualit	5
G. Specification Approval Data	6

A. General information about the course:

Со	urse Identification				
1.	Credit hours:	3			
2. (Course type				
a.	University \Box	College \Box	Department□	Track	Others □
b.	Required 🛛	Elective			
3. Level/year at which this course is offered: 8/4					

4. Course general Description

This course covers curves in the plane and R^3 . Reparameterizations by arch length, curvature and torsion. Fernet's theorem, osculating plane, normal plane, rectifying plane, involutes, evolutes, Bertrand curves, global properties of curves, local and intrinsic properties, simple closed curves, isoperimetric inequality, four vertex theorem, spherical indicatrix, surfaces in R^3 , smooth surfaces, examples of surfaces, the second fundamental form, length of curves on surfaces, surface area, the second fundamental forms, Gaussian formula, the normal and geodesic curvature, principle curvature, mean and Gaussian curvatures, geodesics and spherical image.

- 5. Pre-requirements for this course (if any): Analytic Geometry
- 6. Co- requirements for this course (if any):
- 7. Course Main Objective(s)

Apply calculus and its applications to the geometry of curves and surfaces in space.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	3	100%
2.	E-learning		
3.	Hybrid • Traditional classroom • E-learning		
4.	Distance learning		

2. Co	2. Contact Hours (based on the academic semester)				
No	Activity	Contact Hours			
1.	Lectures	45			
2.	Laboratory/Studio				
3.	Field				
4.	Tutorial				
5.	Others (specify)				
	Total	45			

B. Course Learning Outcomes (CLOs), Teaching Strategies and **Assessment Methods**

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understa	nding		
1.1	Define curves in plane and space (3D).	K1	Lecture Scientific	Quiz Written Exam
1.2	Describe curvature, torsion and associated curves to a space curve.	KI	discussions	Homework
2.0	Skills			
2.1	Construct surfaces in space (3D).			
2.2	Describeregularsurfacesandregularcurves.	S2	Lecture Scientific discussions	Quiz Written Exam Homework
2.3	Explainsprinciple,mean, andGaussiancurvatures.			
3.0	Values, autonomy, and re	esponsibility		

C. Course Content

No	List of Topics	Contact Hours
1.	Review of vectors and vectors valued functions.	9
2.	Curves in the plane and R^3 .Reparametrization by arch length, Curvature and torsion.	12
3.	Osculating plane, Normal plane, Rectifying plane.	9
4.	Frenet-Serret apparatus, examples, Frenet-Serret Theorem	6
5.	Introduction to the local theory of surfaces, Coordinate	6

	transformations.	
6.	First and second fundamental form.	3
	Total	45

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	First Exam	6-8	20
2.	Second Exam	11=13	20
3.	assignments and quizzes	During classes	10
	Final Exam	16-18	50

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	نصار حسن عبدالعال السلمي، الهندسة التفاضلية ،2008، مكتبة الرشد.
Supportive References	Willmore (1980), Introduction to Differential Geometry, Oxford.
Electronic Materials	https://www.ams.jhu.edu/~mmiche18/120a.1.10w/index.html
Other Learning Materials	

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Lecture Hall by the number of seats = 25 seat approximately.
Technology equipment (projector, smart board, software)	Data showSmart BoardWi Fi
Other equipment (depending on the nature of the specialty)	None

F. Assessment of Course Quality

Assessment Areas/Issues		Assessor	Assessment Methods	
Effectiveness of t	eaching		Student	Student Questionnaire (Indirect)
Effectiveness	of	students	Peer Reviewer	Rubrics (Indirect)

Assessment Areas/Issues	Assessor	Assessment Methods
assessment		
Quality of learning resources		
The extent to which CLOs have been achieved	Faculty	Direct
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE	Council of Mathematics Department
REFERENCE NO.	14441017-0208-00014
DATE	17-10-1444H

