

T-104 2022

Course Specification

Course Title:	Graph Theory
Course Code:	454Math-3
Program:	B.Sc. of Mathematics
Department:	Mathematics
College:	Art and Science
Institution:	Najran University
Version:	1
Last Revision Date:	07-05-2023

Table of Contents:

Content	Page
A. General Information about the course	3
 Teaching mode (mark all that apply) Contact Hours (based on the academic semester) 	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	4
D. Student Assessment Activities	5
E. Learning Resources and Facilities	5
1. References and Learning Resources	5
2. Required Facilities and Equipment	5
F. Assessment of Course Qualit	6
G. Specification Approval Data	6

A. General information about the course:

Со	urse Identification					
1. (Credit hours:	3				
2. (Course type					
a.	University \Box	College 🗆	Department	\times	Track	Others □
b.	Required 🛛	Elective				
3.	Level/year at whic	h this course is o	ffered:	8/4		

4. Course general Description

This course covers fundamental concepts for the theory of graphs for both directed and undirected graphs, etc. Topics include graph isomorphism, Eulerian and Hamiltonian graphs, connectivity; Adjacency matrix for directed graph, complete graph, planar graph and Euler formula, isomorphism between graphs; Eulerian and Hamiltonian graphs, infinite and dual graphs. The course emphasis on algebraic graph theory: chromatic number, chromatic polynomial.

- 5. Pre-requirements for this course (if any): None
- 6. Co- requirements for this course (if any): None
- 7. Course Main Objective(s)

To learn the basic terminology and some of the theory associated with trees and graphs and to explore applications of them in coding.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	3	100%
2.	E-learning		
3.	Hybrid • Traditional classroom • E-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	45

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understan	ding		
1.1	Define concepts related to graphs and trees.			
1.2	Identify whether graphs are directed, undirected, Hamiltonian and/or Eulerian. etc.	K1	LectureDiscussions	 Quiz Written Exam
2.0	Skills			
2.1	Demonstrate induced sub-graphs, and proper sub-graphs	S2		• Assignments
2.2	Solve problems involving vertex and edge connectivity and planarity.	S1	LectureDiscussions	QuizMidtermFinal Exam
3.0	Values, autonomy, and res	sponsibility		
3.1	Work as part of a team and independently.	V1	Assignments	 Oral Exam Observation Card

C. Course Content

No	List of Topics	Contact Hours
1.	Fundamental concepts: Trees; Characterization of trees	6
2.	Types of graphs: Undirected graphs, Directed graphs and weighted graphs and related notions such as paths and cycles, degree of graphetc.	9
3	Connectivity: Adjacency matrix for directed graph, complete graph, planar graph and Euler formula.	9
4	Isomorphism between graphs; Eulerian and Hamiltonian graphs, infinite and dual graphs	12
5	Algebraic graph theory: chromatic number, chromatic polynomial.	9
	Total	45

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Semester Exam1	6-8	20
2.	Assignments	During classes	10
3.	Semester Exam2	11-13	20
4.	Final Exam	16-18	50

D. Students Assessment Activities

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	علي، علي عزيز، "مقدمة في نظرية البيانات"، جامعة الموصل، 1983م
Supportive References	J. A. Bondy and U. S. R. Murty (2011), Graph Theory, London, New York.
Electronic Materials	B. West (2000), Introduction to Graph theory, Prentice Hall.
Other Learning Materials	http://en.wikipedia.org/wiki/Graph theory

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	• Lecture Hall by the number of seats = 25 seat approximately.
Technology equipment (projector, smart board, software)	Data showSmart BoardWi Fi
Other equipment (depending on the nature of the specialty)	• None

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student	Student Questionnaire (Indirect)
Effectiveness of students assessment	Peer Reviewer	Rubrics (Indirect)
Quality of learning resources		
The extent to which CLOs have been achieved	Faculty	Direct
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE	Council of Mathematics Department
REFERENCE NO.	14441017-0208-00014
DATE	17-10-1444H

